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Abstract

An image based method for transient surface normal heat flux calculation from thermographic data is suggested. It is based on an
analytical solution of the three-dimensional linear heat conduction equation. The method yields correct results for the surface normal
heat flux even in regions with strong lateral gradients by taking into account the transient surface temperature of an area surrounding
each evaluation point within the thermographic image. The solution for the heat flux can be stabilized with respect to measurement errors
by an iterative regularization method. The validation of the method in synthetic test cases indicates its good accuracy over a broad range
of Fourier numbers.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The accurate knowledge of surface heating rate is of
considerable importance in many fields of thermal design.
Since the surface normal heat flux is not directly accessible
by measurements it has to be estimated from transient tem-
perature measurements. The measured temperature has to
be linked with the surface heat flux by solving a boundary
inverse heat conduction problem. If the temperature is
measured directly at the boundary, as in thermography,
the problem is stated pseudo inverse [1] since it reduces
to recalculating a boundary condition of the first kind into
a second kind boundary condition, hence no continuation
of the heat conduction equation solution is needed. There
are several methods to solve this data reduction problem.
The most widely applied methods have been classified
and evaluated by Walker and Scott [2]. They divide the
methods into three primary classes.
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The first class uses closed-form solutions of the heat
conduction equation to resolve the heat flux in terms of
an analytical function of the measured temperature.
Among those is the one-dimensional semi-infinite solid
conduction method proposed by Cook and Felderman
[3]. This simple method is tailored to discrete temperature
sensors such as thin film gauges [4]. These are designed
such that the temperature field in the sensing element
may be identified with the one-dimensional temperature
field in a semi-infinite solid with uniform heat flux at its
surface. Thus, the method cannot account for lateral
surface heat conduction and fails when it is applied on
surfaces with steep gradients in the heat flux density. More-
over the class one methods are restricted to cases for which
the linearized heat conduction equation applies, i.e. con-
stant thermometric conductivity has to be assumed.

This is overcome by the class two methods which use
numerical techniques to solve the conduction equation
for arbitrary geometries. The measured surface tempera-
ture is applied as a boundary condition to a transient
finite-element or finite-difference calculation. The surface
heat flux can then be found from an energy balance at
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Nomenclature

a thermometric conductivity
A transfer function
bx, by width, height of rectangular bar
c specific heat capacity
d distance from boundary or thickness of body
D descent direction, Eq. (37)
Fo Fourier number
I, J, K dimension of measured data
J residual functional
t time
q heat density
~_q ¼ f _qx; _qy ; _qzgT vector of heat flux density
_Q substitute surface normal heat flux density, Eq.

(16)
T temperature
u, v, w coordinates in Fourier space (cartesian wave

numbers)
x, y, z cartesian coordinates, z is the wall-normal direc-

tion

Greek symbols

a descent parameter, Eq. (40)
b conjugation parameter, Eq. (38)
d evaluation error

D finite difference
� measurement error
h transformed temperature, Eq. (2)
H substitute temperature, Eq. (19)
k thermal conductivity
n, g transformed cartesian coordinates, Eq. (15)
. density
r2 variance of measurement
s integration time
x norm of wave number vector, Eq. (27)

Indices

0 initial state
f final
e evaluated
i input
i, j, k indices of measurement points (i, j: spatial;

k: temporal)
l, m, n indices of evaluation points (l, m: spatial;

n: temporal)
0 evaluation point
m iteration index
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the surface control volume. Although the flexibility in solv-
ing the conduction equation is increased by these methods,
they introduce some additional uncertainties arising from
the discretization as discussed in [2].

The third class of methods is usually applied to inverse
heat conduction problems where the temperature is mea-
sured in some distance from the boundary. The inherently
ill-posed character of those problems implies exact solu-
tions to be unstable. That is the calculated heat flux does
not depend continuously on the measured temperature
which causes heat flux estimations to be corrupted if the
temperatures are subject to small measurement errors. To
solve this kind of problems regularization techniques have
to be applied [5]. This is done in the class three methods
which most commonly solve the inverse problem based
on a least-squares minimization. The solution can be found
by calculating the temperature resulting from an initially
assumed heat flux and comparing it to the measured tem-
peratures. An optimization scheme involving the regulari-
zation is then used to find an updated guess for the heat
flux. The subsequent forward conduction analysis can be
performed by any analytical or numerical solution method.
Walker and Scott have shown that these techniques can be
particularly useful to solve the pseudo inverse problem
treated here.

Digital thermographic imaging techniques provide time-
resolved high-resolution surface temperature data which
allows for heat flux analysis considering the lateral conduc-
tion. For this purpose the common class two and class
three methods need a finite volume discretization of the
whole body in order to solve the discretized heat conduc-
tion equation within the 3D domain. That is a considerable
numerical effort if the spacial discretization of the surface
heat flux is determined by the resolution of the thermo-
graphic image [6]. In order to reduce the number of
unknowns the surface heat flux can be parametrized by
specifying functions for its distribution in space and time
which at the same time regularize the solution (e.g. [7] or
[8]). Sophisticated model reduction techniques for inverse
heat conduction problems have been proposed in [9] and
references therein. However, all of these techniques predis-
pose some filtering of the measured signal which is inevita-
ble if the number of unknowns is reduced. A well directed
filtering approach by parametrization of the surface heat
flux with sinusoidal functions has been given in [10]. There
the temperature was measured on the back of a flat plate in
order to estimate the heat flux on the front surface. The dis-
crete cosine transform of the temperature signal on the
back surface was taken to identify all frequencies with
amplitudes beyond some threshold. Only those frequencies
were assumed to contribute to the heat flux on the front. A
numerical scheme was then applied to calculate the nonlin-
ear temperature response to each relevant Fourier compo-
nent of the heat flux. The resulting sensitivity matrix was
taken to calculate the heat flux on the front with Beck’s
[11] regularization method. It was shown, that the number
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of unknowns could be significantly reduced by this proce-
dure which solves the inverse problem only for the domi-
nant frequencies of the thermographic images and by this
filters the measurement noise efficiently.

The approach presented in this paper is a compromise
between the simplicity of the class one methods and the
accuracy of the class three methods at the cost of reduced
flexibility concerning geometry and thermophysical proper-
ties: An analytical 3D solution of the linearized equation of
heat conduction is adopted to calculate the surface normal
heat flux directly from the thermographic data without the
need of finite-difference modelling. Discrete data reduction
schemes are developed subsequently for the evaluation of
the thermographic images in Fourier space and in real
(image) space. Evaluation in Fourier space involves a dis-
crete Fourier transform (DFT) of the thermographic data
which yields a spatially decoupled solution of the problem.
For the real space evaluation the images are treated with
Gaussian filter masks which gives substitute temperature
values for each image point. This substitute temperature
can then be evaluated by the formula of Cook and Felder-
man [3]. The amplification of measurement noise brought
over by the direct solution methods can be avoided by solv-
ing for the heat flux iteratively with a conjugate gradient
algorithm using a regularizing stopping criterion [12]. In
case of the decoupled solution in Fourier space this stop-
ping criterion singles out the relevant frequencies and
thereby takes the role of the threshold criterion used for
filtering in [10]. However, due to the analytical approach
(which implies temperature independent thermophysical
properties) the computational effort of the method is by
some orders of magnitude smaller than for the numerical
methods described in literature, hence, no model reduction
is needed and all discrete frequencies of the thermographic
image can be considered for the estimated heat flux if
necessary.
2. Problem statement

A semi-infinite solid body (�1 < x, y <1; z P 0) is
subject to a heat flux _qzðx; y; z; tÞjz¼0 normal to the surface.
Here j. . . denotes the evaluation at some specific point. The
temperature at the surface T(x,y,z, t)jz=0 is supposed to be
known for the time interval 0 6 t 6 tf. The initial tempera-
ture of the body including its boundary for t < 0 is constant
and can be set to zero (T(x,y,z, t)jt=0 = T0 = 0). The
unknown heat flux _qzðx; y; z; tÞ at any time t is to be calcu-
lated. The problem is governed by the heat conduction
equation

c.
oT
ot
¼ rðkrT Þ; ð1Þ

where the thermal conductivity k, the specific heat capa-
city c and the density . all depend on the temperature.
But for many materials the thermometric conductivity
a = k/(.c) depends less on temperature than k does. Then
it is reasonable to linearize Eq. (1) by using the transforma-
tion [13]

h ¼ 1

k0

Z T

T 0

kðT 0ÞdT 0; ð2Þ

where k0 is the thermal conductivity at temperature T0. The
transformed temperature h will be called only temperature
in the following since it has the same dimension and is sim-
ilar to the temperature in a problem with constant k. With
this simplification the governing heat conduction equation
becomes

oh
ot
¼ a

o2h
ox2
þ o2h

oy2
þ o2h

oz2

� �
. ð3Þ

Here a shall not depend on temperature. The initial condi-
tion stated for T holds for the transformed temperature
(hjt=0 = 0). The heat flux in demand is the z-component
of the heat flux vector defined by ~_q ¼ �k0rh.

3. Analytic solution

3.1. Formulation in Fourier space

The temperature field developing in an infinite solid
(�1 < x,y,z <1) from a given initial distribution
hjt=0 (x,y,z) can be found by transforming the temperature
from real space into Fourier space [14]

hjt¼0ðu; v;wÞ ¼
Z 1

�1

Z 1

�1

Z 1

�1
hjt¼0ðx; y; zÞe�iðuxþvyþwzÞdxdy dz.

ð4Þ
Now inserting any component of a Fourier series
hju,v,w(t)ei(ux+vy+wz) into Eq. (3) one obtains

dhju;v;wðtÞ
dt

þ aðu2 þ v2 þ w2Þhju;v;wðtÞ ¼ 0 ð5Þ

and from this the temporal dependency

hju;v;wðtÞ ¼ hju;v;w;t¼0 � e�aðu2þv2þw2Þt. ð6Þ

Assume the initial temperature distribution in real space
hjt=0 (x,y,z) to be zero everywhere but in the plane z = 0,
where its value is infinite in such a way that the amount
of heat per area that is concentrated in each point of the
plane is 2qzjz=0 (x,y). This can be written with the delta
function d(z)

hjt¼0ðx; y; zÞ ¼
2qzðx; yÞ

.c
dðzÞ. ð7Þ

The factor 2 is used in order to identify qz(x,y) with the
heat supplied to half of the body (z P 0). Putting Eq. (7)
into Eq. (4) and using Eq. (6) one obtains withR

dðzÞe�iwz dz ¼ 1

hðu; v;w; tÞ ¼ 2

qc
qzðu; vÞ � e�aðu2þv2þw2Þt; ð8Þ
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where qz(u,v) is the 2D Fourier transform of the assumed
heat distribution

qzðu; vÞ ¼
Z 1

�1

Z 1

�1
qzðx; yÞ � e�iðuxþvyÞ dxdy. ð9Þ

Transforming only the third dimension back into real space
yields

hðu; v; z; tÞ ¼ 2

qc
qzðu; vÞ � e�aðu2þv2Þt 1

2p

Z 1

�1
e�aw2teiwz dw.

ð10Þ
Because e�aw2t is an even function with respect to w the
integral reduces toZ 1

�1
e�atw2

cosðwzÞdw ¼
ffiffiffiffi
p
at

r
e�

z2

4at. ð11Þ

For symmetry reason half of the heat assumed in Eq. (7)
will propagate into positive z-direction. So Eq. (10) can
be identified with the solution of the semi-infinite tempera-
ture field (z P 0) where qz(x,y) is released into the surface
at time t = 0. The linearity of Eq. (3) allows for superposi-
tion of this solution for heat released at subsequent time
steps. Thus, the Fourier transformed temperature field
due to a transient heat supply _qzjz¼0ðx; y; sÞ with s 2 [0 . . . t]
is

hðu;v;z; tÞ¼ 1

qc
ffiffiffiffiffiffi
ap
p

Z t

0

_qzjz¼0ðu;v;sÞ
e�a ðu2þv2Þðt�sÞ½ �ffiffiffiffiffiffiffiffiffi

t� s
p � e�

z2

4aðt�sÞds.

ð12Þ

This is the forward solution of the heat conduction prob-
lem giving the transient temperature of the body as an inte-
gral over the history of its surface heat flux in Fourier
space. For the iterative estimation of the heat flux as it is
presented in Section 5 a discrete form of this equation is
used. It is shown in Appendix A how the inverse of Eq.
(12) can be found where the heat flux is a function of sur-
face temperature:

_qzjz¼0ðu; v; tÞ

¼ k0ffiffiffiffiffiffi
ap
p

Z t

0

oðhjz¼0ðu; v; sÞe�a½ðu2þv2Þðt�sÞ�Þ
os

dsffiffiffiffiffiffiffiffiffiffi
t � s
p . ð13Þ

For the constant element of the Fourier series (u = v = 0)
Eqs. (12) and (13) reduce to the well-known one-dimen-
sional solution.

3.2. Formulation in real space

The corresponding formulations of the direct and the
inverse solutions (Eqs. (12) and (13)) in real space can be
found by transformations similar to that already done for
the z-component in Eqs. (10) and (11). Merely, the coordi-
nates (x,y) are already used for localization of the released
heat flux, hence (x 0,y 0) is used for the point of evaluation.
With Eq. (9) this results in
hðx0;y0;z; tÞ ¼Z t

0

e�
z2

4aðt�sÞ

4½paðt� sÞ�
3
2.c
�
Z 1

�1

Z 1

�1
_qzjz¼0ðx;y;sÞe

�ðx
0�xÞ2þðy0�yÞ2

4aðt�sÞ dxdy ds.

ð14Þ

The surface integration can be done in a time-dependent
coordinate system

n ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aðt � sÞ

p ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aðt � sÞ

p
dn ¼ dx;

g ¼ yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aðt � sÞ

p ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aðt � sÞ

p
dg ¼ dy;

ð15Þ

which yields a substitute local heat flux _Q for each surface
point

_Qðx0; y0; t; sÞ ¼ 1

p

Z 1

�1

Z 1

�1
_qzjz¼0ðn; g; sÞe�½ðn

0�nÞ2þðg0�gÞ2� dndg.

ð16Þ
Introducing this in Eq. (14) and evaluation at the surface
gives the surface temperature as a function of the substitute
heat flux

hðx0; y0; tÞ ¼ 1

qc
ffiffiffiffiffiffi
pa
p

Z t

0

_Qðx0; y 0; t; sÞffiffiffiffiffiffiffiffiffiffi
t � s
p ds. ð17Þ

The inverse form giving the surface heat flux as a function
of the surface temperature can be derived accordingly from
Eq. (13)

_qzjz¼0ðx; y; tÞ ¼
k0ffiffiffiffiffiffi
pa
p

Z t

0

oHðx; y; t; sÞ
os

1ffiffiffiffiffiffiffiffiffiffi
t � s
p ds ð18Þ

with

Hðx; y; t;sÞ ¼ 1

p

Z 1

�1

Z 1

�1
hzjz¼0ðn

0;g0;sÞe�½ðn�n0Þ2þðg�g0Þ2�dn0dg0.

ð19Þ

Note that in case of uniform surface temperature and heat
flux Eqs. (17) and (18) reduce to the well-known solutions
of the one-dimensional problem because then it is
_Qðx0; y0; t; sÞ ¼ _qzjz¼0ðsÞ and H(x,y, t,s) = hjz=0(s).

3.3. Semi-infinite rectangular bar

For the solution given above a semi-infinite body has
been assumed. The solution can be extended to areas that
are close to straight edges with adiabatic bounding faces.
In practice this condition could be realised by a rectangular
surface insert mounted on an isolating material as in [6].

Assume a semi-infinite rectangular bar 0 6 x 6 bx,
0 6 y 6 by, 0 6 z 61 with a non-uniform heat flux sup-
plied to its surface at z = 0. The other four surfaces have
adiabatic boundary condition. The temperature field devel-
oping in this body is that of a semi-infinite body with the
surface heat flux being periodically continued over the
boundaries. The corresponding semi-infinite temperature
field is found by the method of images outlined in [13]. This
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is illustrated in Fig. A.1. The body is continued in x- and
y-direction and the heat flux at z = 0 is mirrored about
all planes x = s Æ bx; y = s Æ by with s = 0,±1, ±2, . . . The
resulting temperature field is symmetric to the bounding
planes and therefore there is no heat flux on the boundaries
of the body except the heat supplied at z = 0 which is the
required condition. So the heat flux on the physical surface
can be evaluated by using the mirrored surface temperature
field.

3.4. Plane plate of finite thickness

With Eq. (12) the temperature field caused by a heat flux
at the surface z = 0 is given as a function of the distance z
from this surface. The method of images [13] can be applied
to expand this solution for the case with zero heat flux on a
second surface at distance z = d, that is to calculate the
temperature field within a plane plate of thickness d with
the heat flux _qzjz¼0 at its front surface and with adiabatic
back surface. This can be modelled by placing heat sources
that are mirror images of the front surface heat flux in all
planes z = 2n Æ d with n 2 Z which gives

hðu; v; z; tÞ ¼ 1

qc
ffiffiffiffiffiffi
ap
p

Z t

0

_qzjz¼0ðu; v; sÞ

� e�a½ðu2þv2Þðt�sÞ�ffiffiffiffiffiffiffiffiffiffi
t � s
p

X1
n¼�1

e�
ðz�2ndÞ2
4aðt�sÞ

 !
ds. ð20Þ

In practice the number of terms that have to be included in
the sum depends on the time span (t � s). Their value soon
becomes small for large n considering only the physical
area 0 6 z 6 d. The inverse of this solution is not given,
however, the preferred solution method for the inverse
problem is the iterative regularization method described
in Section 5 where only forward conduction analysis is
needed. Note that the equation above can also be taken
to find the front surface heat flux from temperature mea-
surements at the back surface (z = d) as it has been done
numerically for the nonlinear case in [10]. If the heat flux
at the back surface is non-zero but known for example as
a function of temperature, the problem can be decomposed
due to the presumed linearity into a direct and an inverse
problem (see [9]). Both can be solved by the equation
above.
Fig. A.1. Mirrored temperature field for heat flux evaluation close to
adiabatic edges of a body.
3.5. Different geometries

Most technical cases have to deal with finite body depth
and different boundary types than assumed above. But the
assumption of a semi-infinite body can still be reasonable
for a plane surface at some distance from the edges of a
finite body provided the measurement time is small com-
pared to the time it would take a heat flux on these edges
to significantly change the temperature at the point of eval-
uation. It might also happen that temperatures can only be
measured within a finite area of a surface which causes the
solution at the edge of the evaluated area to be uncertain.
In the following the necessary body size and the error at the
edge of a finite evaluation area are estimated. Three cases
are distinguished.

3.5.1. Adiabatic boundary

A disturbing boundary in some distance from the measured

surface is known to be virtually adiabatic.

Since this case can be very complex if more than one and
arbitrarily shaped boundaries are considered, an error esti-
mation can only yield the timescale within which the body
can be regarded as semi-infinite. The method of images
used for the derivation of Eq. (20) illustrates the influence
of an adiabatic boundary. Although now boundaries are
considered that are neither plane nor parallel to the evalu-
ation plane it is reasonable to assume that the additional
terms introduced by such boundaries are of the same order
of magnitude. Therefore the assumption of a semi-infinite
body holds as long as these additional terms are smaller
than a certain percentage of the term representing the sur-
face heat flux itself. For example if d is the smallest distance
between the point of evaluation and the disturbing bound-
ary and a 1% error in the heat flux can be allowed it has to
be claimed that

2
X1
n¼1

e�
ð2ndÞ2
4aðt�sÞ < 2 e�

d2

at þ 1

e
4d2
at � e�

d2
at

� �
< 1%. ð21Þ

For the relevant values of d 2/at > 1 the sum is dominated
by its first term hence it is sufficient to claim

2e�
d2

at < 1% which gives
d2

at
> 5:3. ð22Þ

Thus the inverse Fourier number Fo�1 = d 2/at built with
the smallest distance between a disturbing boundary and
the point of evaluation and with the measurement time
has to be larger than the estimated value of 5.3. But note
that in case of several disturbing boundaries some larger
value has to be claimed for Fo�1.

3.5.2. Non-adiabatic boundary

The heat flux on the disturbing boundary plane has the

same order of magnitude as the heat flux on the evaluated

plane.

With the same reasoning as before Eq. (20) is taken for a
rough estimation of the necessary body size or maximum
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measurement time, respectively. But now the heat flux on
the disturbing surface has the same influence on the tem-
perature at the surface of evaluation as vice versa. There-
fore the terms from Eq. (20) representing the disturbing
effect are evaluated for z = d assuming again that d is the
smallest distance between the point of evaluation and the
disturbing boundary. The resulting terms have to be added
to the error terms arising from the case with adiabatic
boundary given above. Then the demand for less than
1% error in the heat flux evaluation becomes

2
X1
n¼1

e�
ð2n�1Þ2d2

4aðt�sÞ þ e�
ð2nÞ2d2

4aðt�sÞ

� �
6 2

X1
n¼1

e�
n2d2

4at

< 2 e�
d2

4at þ 1

e
d2
at � e�

d2
4at

� �
< 1%. ð23Þ

Again for d2/4at > 1 the first term of the sum is an order of
magnitude larger than the rest which gives

d2

at
¼ Fo�1 > 21:2. ð24Þ

With a slightly different derivation Fo�1 > 16 has been
claimed in [4] for the use of the semi-infinite one-dimen-
sional evaluation method.

3.5.3. Finite field of view

The temperature is measured far away from any boundaries

but the area viewed by the camera is finite and therefore the

temperature beyond the field of view is unknown and cannot
be used for the evaluation of Eq. (16) or (19).

For the 3D-evaluation some assumption has to be made
for the unknown temperature. If no better estimation can
be found it appears reasonable for evaluation in Fourier
space to assume that the temperature continues periodi-
cally over the edge of the image. For evaluation in real
space one would rather set the temperature outside the
measurement area to its closest measured value at the edge
or take a higher order extrapolation. However, for the fol-
lowing estimation of the evaluation error at a distance d

from the image edge it is assumed that the guessed outside
temperature differs by ±dh from its real value. The error of
H(d, t,s) (Eq. (19)) becomes

dHðd; t; sÞ ¼ � 1

2
erf

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aðt � sÞ

p !" #
� dh. ð25Þ

Putting this into Eq. (18) and integrating over time gives

d _qzjz¼0ðd; tÞ ¼ �
k0

p
� e
�d2

4at

d
� dh. ð26Þ
4. Discrete approximation

Digital cameras provide the surface temperature data in
an orthogonal array of I · J discrete pixels referring to the
coordinates (xi,yj), i 2 [0 . . . I � 1], j 2 [0 . . . J � 1] in phys-
ical space. It is assumed that the infrared image is spatially
calibrated and distortion compensated such that the coor-
dinate axes of physical space are aligned with the rows and
columns of the pixels (see Refs. [15,16] for a detailed cali-
bration method). Further it is assumed that the tempera-
ture measured by one pixel is the temperature at the pixel
center bearing in mind that the measured value corre-
sponds to the mean radiation intensity over the spatial area
represented by one pixel. For evaluation in Fourier space
the images have to be transformed according to common
DFT- or FFT-algorithms. Note that the period type of
Fig. A.1 is suited for a discrete cosine transform with the
discrete frequencies

xij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

i þ v2
j

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

IDx
� i

� �2

þ p
JDy
� j

� �2
s

. ð27Þ

The data is sampled at K equidistant times tk with
k 2 [0 . . . K � 1] and K Æ Dt = tf. In the following it is shown
how Eqs. (12), (13), (17) and (18) can be approximated by
the discrete data in order to evaluate the discrete heat flux
and temperature values in real and in Fourier space. From
the latter the values in real space can be found by the corre-
sponding inverse transformation. The points of evaluation
are denoted with spatial indices l 2 [0 . . . I � 1] and
m 2 [0 . . . J � 1] and the temporal index n 2 [0 . . . K � 1].
4.1. Temporal discretization

An approximation of Eq. (12) (for z = 0) can be found
by dividing the integral into n time-intervals and assuming
that _q is piecewise constant on these

hlm;n ¼
1

qc
ffiffiffiffiffiffi
ap
p

Xn�1

k¼0

_qlm;k

Z tkþ1

tk

e�ax2
lmðtn�sÞffiffiffiffiffiffiffiffiffiffiffiffi

tn � s
p ds. ð28Þ

For the constant Fourier term xlm = 0 this becomes

hlm;n ¼
2

qc
ffiffiffiffiffiffi
ap
p

Xn�1

k¼0

_qlm;k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tn � tk
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tn � tkþ1

p� �
. ð29Þ

For xlm 5 0 the substitution flmðsÞ ¼ xlm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðtn � sÞ

p
re-

sults in

hlm;n ¼
1

k0xlm

Xn�1

k¼0

_qlm;kðerf ½flmðtkÞ� � erf ½flmðtkþ1Þ�Þ. ð30Þ

For the discretization of Eq. (13) the integral is divided in
the same way and a piecewise linear temperature is assumed

_qlm;n¼
k0ffiffiffiffiffiffi
ap
p

Xn�1

k¼0

Z tkþ1

tk

hlm;kþ1�hlm;k

Dt

	

þax2
lm hlm;kþ

hlm;kþ1�hlm;k

Dt
ðs� tkÞ

� �

e�ax2

lmðtn�sÞffiffiffiffiffiffiffiffiffiffiffi
tn� s
p ds.

ð31Þ



Fig. A.2. Illustration of a five-point Gauss–Hermite integration in two
directions within the square grid of pixels. The weight at each interpo-
lation point (o,p) is a product of the two hermite weights Wo and Wp.
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For the constant Fourier term with xlm = 0 this becomes

_qlm;n ¼
2k0ffiffiffiffiffiffi
pa
p

Xn�1

k¼0

hlm;kþ1 � hlm;kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tn � tkþ1

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
tn � tk
p . ð32Þ

This is the formula of Cook and Felderman. For all other
xlm the substitution with f from above and the use of
2
R

f 2 expð�f 2Þdf ¼ �f expð�f 2Þ þ
R

expð�f 2Þdf gives
after some rearrangement

_qlm;n ¼ k0

Xn�1

k¼0

1

2xlma
þ xlmðtn � tkÞ

� �
hlm;kþ1 � hlm;k

Dt

	�
þxlmhlm;k



� ðerf ½flmðtkÞ� � erf ½flmðtkþ1Þ�Þ

þ hlm;kþ1 � hlm;kffiffiffiffiffiffi
pa
p

Dt

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
tn � tk
p

e�ax2
lmðtn�tkÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tn � tkþ1

p
e�ax2

lmðtn�tkþ1Þ
��

. ð33Þ

For the solution in real space Eqs. (29) and (32) are used
with the substitute heat flux _Qlm;k and temperature Hlm,k in-
stead of _qlm;k and hlm,k respectively. Note that the assump-
tion of piecewise linear H results in smaller limits of the
time interval than assuming a linear change of temperature
since the spatial integral (Eq. (19)) changes its value expo-
nentially in regions of non-uniform heat flux. This is one of
the drawbacks of the solution in real space.

4.2. Spatial discretization

The spatial discretization in Fourier space is done by the
discrete Fourier transform of the images which is described
in detail in pertinent textbooks (e.g. [16]) and is therefore
not treated here. In the following it is shown how the surface
integrations of Eqs. (16) and (19) can be performed over the
discrete data. In digital image processing the method is known
as a convolution operation with a Gaussian filter mask.

The evaluation is performed using a Gauss–Hermite
quadrature [17] in two dimensions. This requires for each
time step tk (k < n), the transformation of the surface data
into a local system of coordinates around the pixel at (n,g).
The distance between two pixels in terms of Dn 0 and Dg 0

depends on (n � k) and determines the size of the area of
surrounding pixels that have to be considered for the inte-
gration at each timestep. This area decreases for tk! tn

because physically the area that significantly influences
the temperature at the point of interest decreases with time.
This can be seen from Eq. (8) by deriving that Dn0

Dx0,
Dg0

Dy0 ! 1
for s! t. Having identified a quadratic area of P · P pixels
for integration the abscissas X[1. . .P] and weights W[1. . .P] of
the P-point Gauss–Hermite quadrature are taken to build a
quadratic matrix WoWp of the weights. Afterwards, the
values from the pixels of interest are interpolated in the
points (no = Xo; gp = Xp). For the results presented in this
paper a successive third order polynomial interpolation in
the two directions was implemented. The Lagrange inter-
polation weights and the Hermite weights can be combined
in a filter mask. The elements of the corresponding P · P
data field are multiplied with elements of the mask and
summed up to the value of Hlm or _Qlm at the center of
the matrix. For better clarity Fig. A.2 shows the supporting
points of the Gauss–Hermite quadrature within the square
grid of pixels for the case P = 5. In each point the data is
interpolated from 4 · 4 surrounding pixels. The values
are then weighted and summed up to the substitute temper-
ature or heat flux at the shaded pixel. Note that when the
area of integration is growing with (tn � tk) the integral will
be approximated using more supporting points.

4.3. Computational effort

Since Eqs. (29), (30), (32) and (33) as well as the spatial
integration described above and the Fourier transforma-
tion are all linear operations with respect to the unknowns
the direct and the inverse solution can be written as

ðaÞ h ¼ A � _qz and ðbÞ _qz ¼ A�1 � h. ð34Þ

Here h denotes the vector of all given temperature values
and _qz is the vector of the heat flux values to be calculated.
The notation A�1 indicates the inverse problem. Note that
the assumption of piecewise linear temperature is not in
accordance with piecewise constant heat flux which was as-
sumed for the calculation of these matrices. Hence, here
A�1 is not exactly the inverse of A. For the iterative proce-
dure described in the following section the direct problem is
solved several times. Therefore the computational effort
has to be considered.

The dimension of the transfer matrix A is (IJK)2 which is
too big to store it in memory for usual image sizes even if
only few measurements are taken in time. But if _qz and h
are sorted with respect to time A is triangular and moreover
its elements ohlmn=o _qijk do only depend on (l � k) rather
than on l and k. So only (IJ)2K values have to be stored.
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But still the computational effort in real space is of the order
O½ðIJKÞ2� because in the worst case of large conductivity or
large measurement time the temperature in each point
depends on the past temperatures in all other points.

In contrast the solution in Fourier space is spatially
decoupled because the Fourier members are eigenfunctions
of the problem. So once the transform has been calculated
the computational effort is only of order O½ðIJÞK2� and the
problem can be solved sequentially for each frequency xlm,
hence only K different values ohlmn=o _qlmk have to be kept in
memory. This advantage of the solution in Fourier space is
particularly useful for the iterative solution described in the
following section since the additional effort of the Fourier
transformation can be neglected regarding the overall com-
putational effort.
5. Iterative regularization

In practice the measured temperature values are subject
to measurement noise. With the unknown vector of mea-
surement errors � the vector of all measured values is
hmeas = (h + �). The use of finite differences of the measured
values in Eqs. (32) and (33) sensitizes the inverse solution
to those errors. It is easy to see from these equations that
for very high sampling rates (Dt! 0) the measurement
errors can produce large errors in the determined heat flux.
The aim of regularization is to find approximate solutions
for the heat flux which are stable with respect to measure-
ment errors [5]. The conjugate gradient method with a reg-
ularizing stopping criterion is known to be an effective way
of finding such quasi-solution. The method is extensively
described in [1,12,18]. It has been successfully applied to
different inverse heat conduction problems e.g. [19,20].
The reader is also referred to [21] which is an introduction
to the conjugate gradient method.

Since the direct solution (Eqs. (29) and (30)) is stable due
to the determinacy of the physical problem it can be used to
find a solution of the inverse problem in an iterative proce-
dure by minimizing the functional

Jð _qm
zÞ ¼ jA � _qm

z � ðhþ �Þj
2. ð35Þ

m is the iteration index and j j2 denotes the scalar productP
ð Þ2ijk. Starting from an initial guess the heat flux is cor-

rected at each iteration into the descent direction Dm

_qz
mþ1 ¼ _qm

z þ amDm. ð36Þ

am is the descent parameter scaling the step-size. The descent
direction is found by conjugation of the residual functional
gradient rJð _qm

zÞ at each iteration with the former direction

Dm ¼ �rJð _qm
zÞ þ bmDm�1. ð37Þ

bm is the conjugation parameter. Here the Fletcher-Reeves
version of the parameter is used

bm ¼
jrJð _qm

zÞj
2

jrJð _qz
m�1Þj2

. ð38Þ
The residual functional gradient is found by differentiating
Eq. (35) with respect to _qz

rJð _qm
zÞ ¼ 2ATðA � _qm

z � ðhþ �ÞÞ. ð39Þ

After the descent direction has been calculated the descent
parameter a can be calculated by finding the minimum
point of J along the direction Dm. Differentiating the new
residual functional Jð _qm

z þ aDmÞ with respect to a and
equating the gradient zero yields

am ¼ �
ðA � DmÞTðA � _qm

z � ðhþ �ÞÞ
jA � Dmj2

. ð40Þ

The method described so far is a standard approach [21] to
solve Eq. (34b) for (h + �) in a least square sense and if A is
non-singular it will converge to the direct solution (with
amplified noise) if no regularization is introduced. How-
ever, one can see from Eq. (35) that the value of the resid-
ual functional should never fall below j�j2 if _qm

z solves Eq.
(34a) for h. This can be used for regularization by stopping
the iteration when Jð _qm

zÞ 6 j�j
2. The unknown value j�j2 is

related to the variance r2 of the measured temperatures.
The latter could be estimated from the Gaussian distribu-
tion of a reference measurement at constant temperature.
Assuming that the variance is identical for each pixel and
at all times the stopping criterion for the evaluation in real
space becomes Jð _qm

zÞ 6 IJK � r2. If it is further assumed
that the noise is uncorrelated in space and provided that
the DFT is applied in a form with an orthogonal transfor-
mation matrix the temperatures in Fourier space will have
the same variance as in real space. Thus for the spatially
decoupled treatment of the problem in Fourier space the
stopping criterion at each frequency is Jð _qz

m
lmÞ 6 K � r2.

6. Results

The capabilities of the method are illustrated in three
steps: First the ability to resolve spatial gradients of the
surface heat flux is analysed. Then it is shown how tempo-
ral changes of the heat flux are resolved, and finally the
method is applied to noisy data. All test cases are generated
synthetically, which is common practice for the evaluation
of data reduction schemes. However, it should be men-
tioned that in case of real experimental data the accuracy
is usually reduced.
6.1. Spatial gradients

The heated half-plane at the surface of a semi-infinite
body with a steady heat supply _qz for 0 < s < t over the area
x < 0; �1 < y <1 is taken as a suitable test case with an
infinitely large lateral gradient of heat flux. The analytic
solution of the transient surface temperature for this case
is given in [13]. It has been used to generate synthetic ther-
mographic data by setting the temperature at a pixel to the
exact value calculated at its center. In reality the measured
value will correspond to the mean of radiation intensity



Fig. A.3. Evaluated heat flux distribution at the edge of a heated area on a
semi-infinite solid (DFo = 0.1; Fo = 2.5; _q�i ¼ 100). (a) 1D (Cook and
Felderman), (b) 3D direct evaluation in Fourier space and (c) 3D direct
evaluation in real space.
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over the pixel which is a nonlinear function of temperature;
this is not modelled here. The physical problem has no
characteristic length-scale and therefore the only length-
scale that has to be considered is the pixel size Dx. It is used
to non-dimensionalize the time from the onset of heat flux
giving the Fourier number Fo = a Æ t/Dx2. This parameter
determines the number of pixels that are significantly
affected by the conduction, thus the spatial resolution of
the process is determined with Fo. The temporal resolution
is represented by DFo = a Æ Dt/Dx2. Fo and DFo are linked
by the number of samples n = t/Dt which affects the decay
of the evaluation error after some change of heat flux that
is discretized by linearly varying temperature or heat flux.
In [3] it has been shown that in case of a step in surface heat
flux Eq. (32) approximates Eq. (18) to an accuracy better
than 0.5% after n = 10 timesteps. Thus for all results
presented in this subsection n P 10 was selected in order
to eliminate the influence of that parameter. Further a
non-dimensional heat flux can be defined as _q� ¼
_qzcDt2=ðkDxÞ. For a given Fourier number the error of
the evaluated heat flux _q�e is proportional to the heat flux
input _q�i , because the surface temperature which linearly
enters Eq. (32) scales with this quantity in case of constant
Fourier number. Therefore _q�i ¼ 100 can be chosen which
gives the error of the heat flux calculation d _q� ¼ _q�e � _q�i
in percent.

Fig. A.3 shows the results of heat flux evaluation for
(Fo = 2.5; DFo = 0.1) with the 1D Cook–Felderman
method (a) and with the presented 3D methods directly
evaluated in Fourier space (b) and in real space (c). The
edge of the heated area has been aligned with the edge of
a pixel row, the vertices of the shown grid represent the
pixel centers. The heat flux computed with the 1D method
is obviously corrupted at the edge of the heated area by the
lateral heat flux while the 3D methods are capable of
resolving the edge with very small error. The solution in
Fourier space shows small oscillations which is due to the
approximation of the step by a finite number of Fourier
terms. Figs. A.4(a) and (b) show how the error at the first
pixel bordering the step depends on the parameters DFo

and Fo for the different evaluation schemes. Apparently,
the error of both evaluation methods in Fourier space is
almost independent of Fo and DFo. This means that the
error of these methods depends mainly on how good the
heat flux distribution can be represented by a Fourier ser-
ies. On the other hand the quality of the solutions evalu-
ated in real space depends strongly on DFo which is due
to the assumption of piecewise constant _Q (iterative solu-
tion) or piecewise linear H (direct solution) respectively.
However, the iterative method performs slightly better
and its error is independent of DFo for small values. For
DFo > 0.1 the error increases which means that the tempo-
ral resolution is not appropriate for the desired spatial res-
olution. Therefore, in practice some spatial smoothing of
the data could be allowed in order to reduce the noise level
without loss of the information evaluable with this scheme.
For the direct evaluation method in real space DFo should
be within 0.05 and 0.15 for good results. The lower subfig-
ure displays the evaluation error dependency on Fo when
DFo is constant (DFo = 0.005). For the direct method in
real space the small DFo results in comparatively large
error that depends little on Fo. The iterative solution with
surface integration in real space fails for large Fourier
numbers. This is due to the integration procedure which
for Fo P 6 starts skipping every second pixel around each
evaluation point because the first abscissa even of the 100-
point Gauss–Hermite quadrature becomes bigger than the



Fig. A.4. Error of the heat flux at the pixel bordering the step evaluated
with different schemes depending on DFo and Fo.
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pixel distance in terms of Dn and Dg. This causes some high
frequency eigenfunctions to be undamped during the itera-
tive process.

6.2. Unsteady heat flux

The performance of the method for resolving temporal
changes of the heat flux is tested for the same case as above
but now for a fixed timestep size (DFo = 0.1) and for a
time-dependent heat flux. A step- and a peak-shaped vari-
ation of heat flux over time have been prescribed with the
heat flux changing discontinuously or proportionally toffiffi

t
p

within one timestep. The maximum input heat flux
was _q�i ¼ 100. Fig. A.5 shows the results of the evaluation
with the 1D method and with the 3D method (solution in
Fourier space) calculated directly from Eqs. (32) and (33)
and iteratively from Eqs. (29) and (30). For the graphs
on the left side the input heat flux changes discontinuously
and on the right side it changes proportionally to the
square root of time in order to meet the assumption of
linearly varying temperature. Both 3D approaches outper-
form the 1D method at the step. The differences between
the direct and the iterative solution result from the slightly
different modelling assuming piecewise linear variation of
temperature or piecewise constant heat flux respectively.
Hence the evaluation error depends much on the physical
process that is to be analysed and on the temporal offset
between the measurement times and any stepwise change
of heat flux as for example at the sudden onset of flow in
most hypersonic windtunnels. For cases with a smooth
change of heat flux with respect to the sampling rate the
models assuming linear temperature and linear heat flux
should perform similarly well.

6.3. Noisy data

White Gaussian noise has been added to the exact tem-
perature data of the heated half plane described in Section
6.1. The standard deviation of the noise was chosen to be
1% of the maximum surface temperature at the time evalu-
ated in Fig. A.6. The evaluation was done in Fourier space
with the direct solution in the left subfigure and iteratively
with the regularizing stopping criterion in the right figure.
The regularization method yields a smoother estimate of
the heat flux as has been described in the literature cited
previously. The standard deviation of the evaluated heat
flux is 8.5% for the direct solution and 2.5% with the regu-
larized solution. In this particular case the computation
time for the iterative solution was about 15% longer than
that of the direct solution because for most of the frequen-
cies the stopping criterion was already reached after one
iteration and only some dominant frequencies needed up
to six iterations. However the overall computation time
for this case with 50 · 50 pixels and 40 timesteps was only
about 8 s on a Pentium4 PC.

7. Conclusions

An analytical solution of the linearized heat conduction
equation is adopted to develop data reduction schemes for
the calculation of transient surface heat flux from thermo-
graphic images. The schemes account for lateral heat con-
duction either by calculating a substitute temperature for
each image point from an integral over the surrounding
surface temperature or by transforming the images into
Fourier space and thereby decoupling the problem spa-
tially. In both cases the heat flux can be computed directly
or iteratively using a conjugate gradient algorithm. The lat-
ter allows to introduce a regularizing stopping criterion
which avoids an amplified transmission of measurement
noise to the evaluated heat flux values. The accuracy of
the solution in real space was found to depend strongly
on the Fourier number built with the pixel spacing and
the time delay between two measurements whereas the
solution method in Fourier space performed widely inde-
pendent from these values. Moreover, the iterative solution
method in real space becomes an unacceptable computa-
tional effort already at moderate image sizes arising from
the spatial coupling. Once the discrete Fourier transform
of the images has been calculated, the additional effort
for the iterative solution in Fourier space is acceptable



Fig. A.5. Evaluated heat flux distribution at the edge of an area with unsteady heating. The input heat flux between the timesteps was changed
discontinuously in time and proportionally to the square root of time in the left and the right array of subfigures respectively (DFo = 0.1; _q�i;max ¼ 100).
(a) 1D method; (b) 3D method, direct solution; (c) 3D method, iterative solution.

Fig. A.6. Evaluated heat flux with 1% standard deviation noise added to the temperature data (DFo = 0.1; Fo = 2.5). (a) Direct solution; (b) iterative
solution.
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and gives accurate results with comparatively low noise
level. Therefore this solution method is preferred over the
method in real space. Both methods are developed for
the plane surface of a semi-infinite body or a plate of finite
thickness with rectangular adiabatic edges. For different
type boundaries the accuracy of the method is acceptable
if the Fourier number built with the observation time and
the distance of the boundary is below an estimated value.
The methods can also be considered as an engineering
approach for the heat flux evaluation on slightly curved
surfaces if the Fourier number built with the observation
time and the curvature radius is small.
Appendix A

The following steps show how Eq. (12) can be inverted.
Differentiation with respect to z and multiplication with
�k0 yields:

�k0

ohðu; v; z; tÞ
oz

¼ z
2
ffiffiffiffiffiffi
ap
p

Z t

0

_qzjz¼0ðu; v; sÞ
e�aðu2þv2Þðt�sÞ

ðt � sÞ
3
2

� e�
z2

4aðt�sÞ ds.

It can be shown by differentiation of Eq. (3) that h and
_qz ¼ �k0

oh
oz satisfy the same differential equation. If the ini-

tial and boundary conditions of h are also assumed for _qz

(especially _qzðx; y; z; sÞ ¼ 0 for s < 0) 1 the equation above
holds true when �k0

ohðu;v;z;tÞ
oz is substituted by h(u,v,z, t)

and _qzjz¼0ðu; v; sÞ by hjz=0 (u,v,s):

hðu; v; z; tÞ ¼ z
2
ffiffiffiffiffiffi
ap
p

Z t

0

hjz¼0ðu; v; sÞ
e�aðu2þv2Þðt�sÞ

ðt � sÞ
3
2

� e�
z2

4aðt�sÞ ds.

This is the transient temperature of the body formulated by
the history of its surface temperature. Differentiating this
equation another time with respect to z and again multiply-
ing with �k0 gives

_qzðu; v; z; tÞ ¼
z2qc

4
ffiffiffiffiffiffi
ap
p

Z t

0

hjz¼0ðu; v; sÞ
e�aðu2þv2Þðt�sÞ

ðt� sÞ
5
2

� e�
z2

4aðt�sÞds

� k0

2
ffiffiffiffiffiffi
ap
p

Z t

0

hjz¼0ðu; v; sÞ
e�aðu2þv2Þðt�sÞ

ðt� sÞ
3
2

� e�
z2

4aðt�sÞds.

Finally, by integrating the second summand over s by parts
(using T0 = 0) and evaluation at the surface (z = 0) this can
be reduced to Eq. (13).
1 It would be sufficient to claim _qzðx; y; z; sÞ ¼ const for s < 0 but then

the heat flux in demand would be e_qz ¼ _qz � const. To simplify notation
this case is not treated here.
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